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Thermal-optical design of a geodetic satellite for one millimeter accuracy 
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Smithsonian Astrophysical Observatory, Cambridge, MA, U.S.A. (retired) 
 
Abstract: 
 The LAGEOS (LAser GEOdynamic Satellite) satellites use a 1.5 inch uncoated 
retroreflector (cube corner). Design studies done for LAGEOS-1 showed that using smaller 
cubes would result in greater accuracy and lower thermal gradients. However, this would require 
using a larger number of cubes. Simulations showed that the accuracy goal of 5 millimeters 
could be met using 1.5 inch cubes by adding a dihedral angle offset. The LARES (LAser 
RElativity Satellite) satellite launched in 2012 is a smaller version of LAGEOS using the same 
size cube corner and floating mount as LAGEOS. 
 
 The recent development of COTS (Commercial Off-The-Shelf) cube corners has 
eliminated cost as an obstacle to using a larger number of smaller cubes. COTS cubes have no 
dihedral angle offset. However, no offset is needed if the size is chosen properly. The diffraction 
pattern of a 1.0 inch uncoated cube with no dihedral angle offset has 6 lobes around the central 
peak due to total internal reflection, The velocity aberration for LAGEOS is about 32 to 40 
microradians. The OCS (Optical Cross Section) of a one inch uncoated COTS retroreflector is 
about .5 million sq m for the LAGEOS orbit. 
 
 Testing of 10 inexpensive COTS cubes by Ludwig Grunwaldt and Reinhart Neubert 
shows good cross section (unpublished work done at GFZ Potsdam, Germany). Measurement of 
50 COTS cubes at INFN (Mondaini, C., et al., 2018), shows a loss of cross section of only 33 % 
(Slide 10). Simulations show that systematic range errors on the order of a half millimeter are 
possible for a spherical geodetic satellite such as LARES. Adjustments for the holding and 
ejection system result in some loss of accuracy. 
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1. Introduction and definition of terms. 
 
 The data from earth observation satellites is put into the International Terrestrial 
Reference Frame (ITRF). The ITRF is maintained by observation of a set of spherical geodetic 
satellites with a high mass to area ratio to reduce non-gravitational forces. The spherical shape 
simplifies calculation of the perturbations and makes the observations independent of the 
orientation of the satellite. The most accurate of these satellites are LAGEOS (Fig. 1.), 
 
Fig. 1. LAGEOS. 

 
 
and LARES (Fig. 2.1). 
 
Fig. 2.1 LARES. 

 
 
 
LAGEOS-1 was launched in 1976. LAGEOS-2, launched in 1992, is an exact copy of 
LAGEOS-1. LARES, a smaller version of LAGEOS, was launched in 2012. 
 
 The accuracy goals of the earth observation satellites are continually increasing. The 
current goal is one millimeter. No geodetic satellite currently in orbit can provide this accuracy. 
This paper develops a method of building a geodetic satellite that can provide one millimeter 
accuracy. 
 
 Geodetic satellites are tracked by timing short laser pulses reflected from the cube 
corners on the satellite. The sections below define specialized terms commonly used in satellite 
laser ranging. All calculations in this paper are done for wavelength 532 nanometers. 
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1.1 Velocity aberration. 
 
 In the inertial coordinate system of a retroreflector, a beam of light entering the 
retroreflector will be returned along the same line that it entered. If there is a difference in 
velocity between the retroreflector and the transmitter, the beam will not be returned to the 
source because the source has moved. The usual situation is that the retroreflector is in orbit and 
the transmitter is on the ground. We will consider the retroreflector to be stationary and the 
transmitter to be moving. The geometry is shown in Fig. 2.2. 
 
Fig. 2.2. Velocity aberration. 
 

 
 
 A transmitter emits a pulse of light at point A which travels in time Δ𝑡 at velocity c to a 
retroreflector. The center of the reflected beam returns to point A after another time interval  Δ𝑡. 
In time 2Δ𝑡, the transmitter moving at velocity v at an angle f from a line perpendicular to the 
line of sight moves to point B. In order for the transmitter to receive any of the reflected light at 
point B, the angular radius J of the reflected beam must be at least  
 

𝜗 =
2𝑣𝑐𝑜𝑠𝜙Δ𝑡

𝑐Δ𝑡 = 2
𝑣
𝑐 𝑐𝑜𝑠𝜙 

where 𝜗 is the velocity aberration. 
 
1.2 Range correction and centroid. 
 
 The reflection from a spherical satellite will have pulses from each of the active 
retroreflectors on the side of the satellite facing the incident beam. The range to each cube corner 
is different. This creates a complicated return pulse. In this paper, the position of the return pulse 
will be defined as the centroid, i.e., the weighted mean position of the reflections from all the 
active reflectors. The difference between the range to the center of the satellite and the range 
measured to the retroreflectors is defined as the range correction. The range correction is added 
to the range measured to the retroreflectors on the surface of the satellite. 
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1.3 Diffraction, FFDP (Far Field Diffraction Pattern), and OCS (Optical Cross Section). 
  
 The reflections from the retroreflectors will initially be narrow, collimated beams of light. 
However, by the time the reflections reach the receiver they will have spread and overlapped due 
to diffraction. The diffraction pattern of each retroreflector will be different since they are at 
different incidence angles. The position of the receiver in the diffraction pattern will be 
determined by the magnitude and direction of the relative velocity between the transmitter and 
the retroreflector (see Section 1.1). The strength of the signal at the receiver will depend on the 
intensity of the diffraction pattern at the position of the receiver. 
 
 For convenience in computing signal strength, the term cross section has been defined. 
See Eq. (16) in Section 10. It is proportional to the intensity of the diffraction pattern but is given 
in units of area, typically million square meters. One can think of the cross section of a 
retroreflector array as proportional to the area of a diffuse reflecting surface in space that gives 
the same signal as the retroreflector array at a particular point in the far field. The cross section 
and range correction are different at each point in the far field and are given as matrices. 
 
 The analysis in this paper consists primarily of computing and analyzing the far field 
centroid and cross section matrices for a retroreflector array. 
 
1.4 Centroid range correction matrix, and cross section matrix. 
 
 The range correction and cross section are computed as square matrices large enough to 
cover the maximum velocity aberration (see Section 1.1). The center of the matrix is at point A 
where the laser signal was transmitted in the inertial coordinate system of the retroreflector. The 
range correction and cross section will depend on the position of the receiver at point B in the far 
field. 
 
 I developed software for computing the far field range correction and cross section 
matrices as part of the design studies for LAGEOS-1 during the early 1970s. This software was 
needed to accurately account for diffraction. 
 
 To the best of my knowledge no one else has computed the far field centroid and cross 
section matrices for a retroreflector array. I don't know of any papers on this subject by other 
investigators. 
 
2. Perturbations to the diffraction pattern. 
 
 For a perfect reflector, the exiting wavefront is flat with constant phase across the 
aperture. The far field pattern for a circular aperture is the well-known Airy pattern (Section 10). 
The radius of the central peak of the Airy pattern is 1.22𝜆/𝐷 where 𝜆 is the wavelength and D 
the diameter of the cube corner. In this paper all simulations are done at wavelength 532 
nanometers. 
 
 In a solid cube corner, there are various physical effects that alter the phase and 
amplitude of a ray as it passes through the cube corner: 
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1. Phase changes due to total internal reflection for uncoated cubes. 
2. Dihedral angle offsets. 
3. Changes in index of refraction due to thermal gradients. 
4. Variations in index of refraction of the material 
5. Surface roughness 
6. Darkening of the material due to radiation damage in space. 
7. Reflection losses at the back faces if the cube corner is coated. 
8. Fresnel reflection losses on entering and leaving the front face. 
 
 There should be no problem with radiation in COTS or custom-made cubes made from 
fused silica. Radiation damage to fused silica and quartz is discussed in "Induced optical 
absorption in gamma, neutron and ultraviolet irradiated fused quartz and silica" (Marshall, C.D., 
1997). If other materials are used, they should be tested for radiation damage. Measurement of 
50 COTS cubes at INFN (Mondaini, C., et al., 2018), shows a loss of cross section of only 33 % 
(Slide 10). 
 
 The phase changes due to total internal reflection results in 6 lobes around the central 
peak of the diffraction pattern. The size of the cube corner can be adjusted so that velocity 
aberration puts the receiver on this ring of 6 spots around the central peak (Fig. 2.3). 
 
Fig. 2.3. Diffraction pattern of a one-inch uncoated cube. 
 

 
The scale of the pattern is from -50 to +50 micrordians. The cross section is in million sq m. The 
OCS (Optical Cross Section) of a one inch uncoated COTS retroreflector is about .5 million sq m 
for the LAGEOS orbit with velocity aberration 32 to 40 microradians. The clocking of the cubes 
in their mounting is varied to create a uniform ring around the central peak. 
 
 Dihedral angle offsets are not needed. They create a complicated diffraction pattern. In 
particular, the sum of the phase changes due to total internal reflection and dihedral angle offsets 
creates an asymmetric diffraction pattern when linear polarization is used. There will always be 
small dihedral angle offsets due to manufacturing errors. 
 
 The effect of thermal gradients can be minimized in a couple of ways: 
 
1. Keep the optical path length as short as possible by using small cube corners. 
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2. Keep the cube corner as cold as possible to reduce thermal radiation from the front face. The 
LAGEOS uncoated cube corners are thermally decoupled from the core by using a floating 
mount to reduce conduction, and low emissivity of the mounting cavity to reduce radiative 
heating of the back of the cube corner. 
 
 Keeping the cube corner cold requires adjusting the thermal parameters of the core, 
cavity, and cube corner to minimize the temperature of the cube corner. Section 7 gives 
equations for doing this. 
 
3. Centroid vs incidence angle 
 
 A sample array has been devised with rings of 1.0 inch uncoated cubes separated by 12 
degrees on a 20.1 cm radius sphere. An analysis of this array has been done with a program that 
uses the equations in "Method of Calculating Retroreflector Array Transfer Functions". 
Smithsonian Astrophysical Observatory Special Report No. 382 (Arnold, D.A., 1978). There are 
288 cubes. The array geometry is given in Table 1.  
 
Table 1. Positions of the cube corners. 
 

 Ring  Latitude # of CCRs 
1 90 1 
2 78 6 
3 66 12 
4 54 18 
5 42 22 
6 30 26 
7 18 29 
8 6 30 
9 -6 30 

10 -18 29 
11 -30 26 
12 -42 22 
13 -54 18 
14 -66 12 
15 -78 6 
16 -90 1 

 
 In order to study the uniformity of the placement of the cubes, an analysis has been done 
with the incidence angle starting at the North pole and spiraling around the satellite down to the 
equator. The direction of the incidence beam is incremented by 5 degrees in Longitude between 
points. This goes around the satellite in 72 points. The Latitude decreases slightly between each 
point to make the Latitude decrease by about 5 degrees on each revolution. Because these are 
angular coordinates, the points are very close together at the pole (Latitude 90 deg). The distance 
between points increases as the Latitude decreases. The full centroid matrix is computed at each 
incidence angle. In order to have a single number to plot, the average centroid range correction in 
the velocity aberration annulus for LAGEOS (32 - 40 microradians) is computed and plotted in 
Fig. 3. 
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Fig. 3. Centroid vs Colatitude. 
 

 
 

The statistical variation of the range measurements above are shown in Table 2.1 and Table 2.2. 
 
Table 2.1. Statistics for the red line (all points). 
 
Minimum Maximum Max - Min Average Rms 
  0.1623  0.1657  0.0034  0.1642  0.0006 

 
Table 2.2.  Statistics for the black line (average over sets of 72 points). 
 
  Phi minimum   Phi maximum max-min 
  17.6050   0.1640     2.4850   0.1645   0.0004 

 
 There are peak to peak variations in centroid up to about 3 mm in range as the incidence 
angle changes. Since scientific analyses use a large number of range measurements the primary 
concern is systematic variations in centroid with Latitude. Averaging over sets of 72 points (5 
deg in Latitude) shows that the systematic errors are less than the one millimeter goal for 
geodetic satellites. 
 
4. Polarization asymmetry. 
 
 In an uncoated cube, there is an interaction between dihedral angle offsets and phase 
changes due to total internal reflection. This results in an asymmetrical diffraction pattern if 
linear polarization is used. The pattern has approximate circular symmetry for circular 
polarization. The asymmetry can be virtually eliminated if no dihedral angle offset is used. See 
Section 2B of Arnold, D.A., 2002. An offset of 1.25 arcsec in the 1.5 inch cubes is necessary to 
account for velocity aberration. If 1.0 inch uncoated cubes are used the diffraction pattern is wide 
enough to account for velocity aberration without the need for a dihedral angle offset. 
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 Simulations have been done comparing 1.5 and 1.0 inch uncoated cubes. The first design 
uses 204 1.5 inch cubes on a 200 mm radius satellite. The second design uses 303 1.0 inch cubes 
on a 202 mm radius satellite. The range correction and cross section matrices for the satellite are 
irregular at a single incidence angle for both circular and linear polarization. A similar effect 
happens in LAGEOS (See section 4A, Arnold, D.A., 2002). The matrices have been averaged 
over 2520 orientations of the satellite. When this is done a nearly circular pattern appears for 
circular polarization. An asymmetric pattern appears for linear polarization when a dihedral 
angle offset is used. The same effect occurs in LAGEOS (See section 4B, Arnold, D.A., 2002). 
This results in a systematic range error for large data sets. The range correction is different for 
the two designs since the cubes and the spheres are different sizes. The scale of the figures below 
is -50 to +50 µrad. The far field centroid and cross section matrices have been computed and 
plotted. 
 
 The far field centroid matrices 4.1 and 4.2 are for a 1.5 inch cube with a 1.25 arcsecond 
dihedral angle offset. The units are meters. The centroid matrix with circular polarization is 
shown in Fig. 4.1. 
 
Fig. 4.1. Centroid (m) with circular polarization, 1.5 inch. 

 

   
 
This pattern is approximately circular but there is some remaining asymmetry. 
 
The centroid matrix with linear vertical polarization is shown in Fig. 4.2. 
 
Fig. 4.2. Centroid (m) with linear vertical polarization, 1.5 inch. 
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This pattern shows a well-defined asymmetry with larger centroid values aligned vertically 
(parallel to the linear vertical polarization). If horizontal polarization had been used the pattern 
would have been aligned horizontally. 
 
 The far field centroid matrices 4.3 and 4.4 are for a 1.0 inch cube with no dihedral angle 
offset. The centroid matrix with circular polarization is shown in Fig. 4.3. 
 
Fig. 4.3. Centroid (m) with circular polarization, 1.0 inch. 

 

 
 
This pattern has a well-defined circular symmetry. 
 
The centroid matrix with linear vertical polarization is shown in Fig. 4.4. 
 
Fig. 4.4. Centroid (m) with linear vertical polarization, 1.0 inch. 
 

 
As a result of eliminating the dihedral angle offset this pattern is nearly circular despite the use 
of linear polarization. There is a very small remaining asymmetry that shows up only when 
looking at the numerical data. Circular polarization produces an approximately circular pattern 
for both size cubes. 
 
 The next four far field patterns are the cross section matrices corresponding to the four 
centroid patterns shown above. The cross section matrices 4.5 and 4.6 are for a 1.5 inch cube 
with a 1.25 arcsecond dihedral angle offset. The cross section matrices 4.7 and 4.8 are for a 1.0 
inch cube. The units are million sq meters. The plot is inverted gray scale where dark values 
represent higher cross section. The cross section matrix for a 1.5 inch cube with circular 
polarization is shown in Fig. 4.5. 
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Fig. 4.5. Cross section (million sq m) with circular polarization, 1.5 inch. 
 

 
The pattern has good circular symmetry 
 
The cross section matrix with linear vertical polarization is shown in Fig. 4.6. 
 
Fig. 4.6. Cross section (million sq m) with linear vertical polarization, 1.5 inch. 
 

 
The pattern has a "dumbel" shape with bright spots aligned vertically. If horizontal linear 
polarization had been used the spots would have been aligned horizontally. 
 
The far field cross section matrices 4.7 and 4.8 are for a 1.0 inch cube with no dihedral angle 
offset. The cross section matrix for a 1.0 inch cube with circular polarization is shown in Fig. 
4.7. 
 
Fig. 4.7. Cross section (million sq m) with circular polarization, 1.0 inch. 

 

 
The pattern has good circular symmetry. 
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The cross section matrix for a 1.0 inch cube with linear vertical polarization is shown in Fig. 4.8. 
 
Fig. 4.8. Cross section (million sq m) with linear vertical polarization, 1.0 inch. 
 

 
The pattern has good circular symmetry since there is no dihedral angle offset. 
 
 The maximum and minimum values of the centroid have been computed around circles 
of increasing radius in the far field. The asymmetry has been computed as the maximum minus 
the minimum. This difference has been plotted vs the magnitude of the velocity aberration. A 
comparison of the asymmetry for three of the cases above is plotted in Fig. 4.9. 

 
Fig. 4.9. Asymmetry vs velocity aberration 
 

 
 
The red line (top) is for the 1.5 inch cube with a 1.25 arcsecond dihedral angle offset and linear 
polarization. The green line (middle) is for a 1.0 inch cube with linear polarization and no 
dihedral angle offset. The blue line (bottom) is for a 1.0 inch cube with circular polarization and 
no dihedral angle offset. 
 
With the 1.0 inch cubes and no dihedral angle offset the asymmetry is less than .5 mm. 
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5. Centroid vs velocity aberration. 
 
 This section computes the dependence of the centroid on velocity aberration for a 1.5 
inch cube and a 1.0 inch cube. Using a 1.0 inch cube places the velocity aberration on the 6 spots 
around the central peak. This minimizes the variation in cross section over the velocity 
aberration interval. Keeping the cross section more constant also reduces the variation in 
centroid. The velocity aberration varies from about 32 and 40 microradians at the LAGEOS 
altitude. Linear vertical polarization is used since this is the worst case. The variation of the 
centroid around circles of increasing radius in the far field has been computed. The average, 
maximum, and minimum around the circles has been computed at each point. The results for a 
1.5 inch cube are plotted in Fig. 5.1. 
 
Fig. 5.1. Centroid vs velocity aberration for a 1. 5 inch cube with linear polarization. 
 

 
 
The red line (middle) is the average centroid around a circle in the far field. The green line 
(bottom) is the minimum. The blue line (top) is the maximum. 
 
The average (red curve) for the 1.5 inch cube changes by .74 mm from 32 to 40 microradians. 
However, the asymmetry of the pattern can cause changes in centroid up to almost 3 mm 
depending on the direction of the velocity aberration. 
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 The same analysis has been done for a 1.0 inch uncoated cube with no dihedral angle 
offset. The results are plotted in Fig. 5.2 
 
Fig. 5.2. Centroid vs velocity aberration for a 1.0 inch cube with linear polarization. 

 

 
 
The red line (middle) is the average centroid around a circle in the far field. The green line 
(bottom) is the minimum. The blue line (top) is the maximum. 
 
The change of the red curve is .47 mm for the 1.0 inch cube with very little asymmetry. This is 
within the accuracy goal of one millimeter. In principle, a correction could be applied as a 
function of velocity aberration. 
 
6. Thermal simulations with comparison to isothermal case 
 
 If there were no thermal gradients the range correction would be constant. It could be 
measured in the lab before launch. It could be computed theoretically using the parameters of the 
cube corners and the measured dihedral angle offsets. 
 
 The average cross section vs velocity aberration is the same for either a positive or 
negative dihedral angle offset if there are no thermal gradients. As a measure of the effect of 
thermal gradients the cross section vs velocity aberration has been computed for a positive and a 
negative dihedral angle offset under various thermal conditions. 
 
 A number of thermal simulations have been done under different conditions for a 1.0 inch 
circular uncoated cube. Four of those simulations have been selected as representing particularly 
interesting conditions. 
 
 The analysis is done in four stages by programs Thermal2, Raytrace, Difract, and various 
analysis programs that compute the cross section and range correction around circles of 
increasing radius in the far field. 
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 Program Thermal2 is a model of a retroreflector mounted in a cavity using retaining 
rings. It includes models for volumetric absorption of solar radiation by the cube corner, 
absorption of solar radiation by the reflecting surfaces of the cube corner (if metal coated), 
absorption of earth infrared radiation by the front face, radiative heating of the cube by the cavity 
and retaining rings, and conductive heating of the cube by the retaining rings. 
 
 A floating mount is simulated by setting the conductive heating of the cube corner by the 
mounting rings to zero. The temperature of the cavity is assumed to be constant. The retaining 
rings are assumed to be close to the temperature of the cavity. The cube corner is initialized to a 
constant temperature. The integration is continued until equilibrium is reached. The integration 
provides the time constants for the cube corner to reach a steady state temperature gradient. This 
occurs fairly rapidly. Bulk changes in cube temperature can be very slow if the thermal inputs 
are only radiative. The changes are more rapid if conduction is present through the mounting 
rings. 
 
 The output of the thermal simulations by program Thermal2 is a three-dimensional 
matrix giving the temperature distribution in the cube. The next step is to do a ray tracing with 
program Raytrace to get the phase front due to the thermal gradients. The next step is to add 
phase changes due to dihedral angle offsets (if any) and total internal reflection. The far field 
pattern is computed from the phase front by program Difract. The far field pattern is processed to 
compute the average cross section vs velocity aberration. 
 
 Three simulations have been run for each case.  The reference case is with a dihedral 
angle offset of either + or - 1.25 arcsec with no thermal gradient. This is compared to the cross 
section vs velocity aberration with a +(>90 deg) and -(<90 deg) dihedral angle offset and thermal 
gradients. The phase front due to a thermal gradient may be either primarily concave or primarily 
convex. The phase front for a dihedral angle offset is either concave or convex depending on the 
sign of the dihedral angle offset. A dihedral angle offset can either add to the effect of a thermal 
gradient or partially cancel it. 
 
 In the four cases below, the average cross section around circles of constant velocity 
aberration is plotted vs the magnitude of the velocity aberration for the cube corner. For each 
case, the fractional change in cross section has been computed at 32 microradians. 
 
 For coated cubes there is significant absorption of solar radiation that the back metal 
reflecting faces. For uncoated cubes there is only the volumetric absorption which is much 
smaller. At the Lageos orbit height, the effect of earth infrared is lower. For simplicity, the four 
simulations do not include solar heating and infrared radiation from the earth. In effect, the cube 
is facing outer space. The dominant thermal effect is the radiation from the front face of the cube 
corner and the radiative heating from the mounting cavity and retaining rings. Since the radiation 
from the front face it proportional to the fourth power of the temperature, the thermal radiation 
decreases significantly with temperature. An emissivity of .9 is used for the quartz and the 
retaining rings.  
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The results for case 11 are shown in Fig. 6.1. 
 
Fig. 6.1. Case 11, Cube 250 deg K, Core 303 deg K, floating mount 
 

 
 
This case uses a floating mount. The cube temperature is 250 deg K. The core temperature is 303 
deg K. The emissivity of the cavity is .07. The red curve (middle) is for the isothermal case with 
a dihedral angle offset of either + or - 1.25 arcseconds. The average cross section vs velocity 
aberration is the same for both. The green curve (upper) is for a -1.25 dihedral angle offset and 
the thermal gradient. The blue curve (lower) is for a +1.25 dihedral angle offset and the thermal 
gradient. The changes are so small that the curves overlap. The difference (diff) in cross section 
between the blue and green curves is computed at 32 microradians. The fractional change is 
computed as the difference (diff) divided by the largest cross section. The computation is shown 
in Table 3. 
 
Table 3. Fractional change in cross section. 
 
microrad -1.25 +1.25 diff fraction 
32 0.55985671 0.58590446 .02604 .0444 

 
This case gives the lowest thermal perturbation to the cross section. The combination of a 
floating mount, low cavity emissivity, and low cavity temperature results in a low cube 
temperature. 
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The results for case 12 are shown in Fig. 6.2. 
 
Fig. 6.2. Case 12, Cube 293 deg K, Core 303 deg K, with conduction. 

 

 
 
The mount conduction is .02 watts/deg K. The cube temperature is 293 K. The core temperature 
is 303 deg. K. The cavity emissivity is e=.07. The red curve (middle) is for the isothermal case 
with a dihedral angle of either + or - 1.25 arcseconds. The green curve (upper) is with a dihedral 
angle offset of -1.25 arcseconds and a thermal gradient. The blue curve (lower) is with a +1.25 
dihedral angle offset and a thermal gradient. 
 
The fractional change in cross section is computed using the same method as case 11. The 
fractional change is shown in Table 4. 
 
Table 4. Fractional change in cross section. 
 
microrad -1.25 +1.25 diff fraction 
32 0.69658931 0.30281921 .3937 .5653 

 
In this case the conduction through the mount raises the cube temperature significantly. There is 
a large perturbation to the cross section. 
 
 
 
 
 
 
 
 
 
 

2.8

2.4

2.0

1.6

1.2

0.8

0.4

0.0

Cr
os

s 
se

ct
io

n 
(m

illi
on

 s
q 

m
)

50403020100
Velocity aberration (microradians)



 17 

The results for case 16 are shown in Fig. 6.3 
 
Fig. 6.3. Case 16, Cube 359 deg K, Core 413 deg K, high emissivity. 
 

 
 
This case uses a floating mount. The cube temperature is 359 deg K. The core temperature is 413 
deg K. This is a very high core temperature. The emissivity of the mounting cavity is e=.29. This 
is a much higher emissivity that causes more heating of the cube corner. The red curve (middle) 
is with dihedral angle 1.25 arcseconds with no thermal gradient. The green (lower) curve is with 
dihedral angle offset -1.25 arcseconds and a thermal gradient. The blue curve (upper) is with a 
+1.25 dihedral angle offset and a thermal gradient. 
 
The fractional change in cross section is computed using the same method as case 11. The 
fractional change is shown in Table 5. 
 
Table 5. Fractional change in cross section. 
 
Microrad -1.25 +1.25 Diff Fraction 
32 0.22607794 0.67228200 .4462 .6637 

 
In this case the core temperature is higher, and the emissivity of the core is also higher. This 
produces a high cube temperature that results in large thermal perturbations. 
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The results of the analysis of case 17 are shown in Fig. 6.4 
 
Fig. 6.4. Case 17. Cube 298 deg K, Core 343 deg K, high emissivity 

 
 
This case uses a floating mount. The cube temperature is 298 deg K. The core temperature is 343 
deg K. This is lower than in case 16, but still high. The emissivity is e=.29. This gives more 
heating to the cube. The red curve (middle) is with dihedral angle 1.25 arcseconds with no 
thermal gradient. The green (lower) curve is with dihedral angle offset -1.25 arcseconds and a 
thermal gradient. The blue curve (upper) is with a +1.25 dihedral angle offset and a thermal 
gradient. 
 
The fractional change in cross section is computed using the same method as case 11. The 
fractional change is shown in Table 6. 
 
Table 6. Fractional change in cross section. 
 
Microrad -1.25 +1.25 Diff Fraction 
32 0.39935082 0.68346629 .2841 .4156 

 
 
The core temperature is lower than in case 16, but the emissivity of the core is still high. The 
thermal perturbation is reduced somewhat compared to case 16. 
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 The temperature of the cube and the heat conducted through the mount are the primary 
factors in determining the change in cross section due to thermal effects. The fractional change in 
cross section is plotted vs temperature in Fig. 7.1. 
 
Fig. 7.1. Fractional change in cross section vs temperature. 
 

 
 
Cases 11, 17, and 16 that use a floating mount are connected by a line. The fractional change 
increases with temperature. Case 12 is plotted separately since there is also conduction. The 
mount conduction increases the change in cross section at the same cube temperature. Cases with 
conduction fall on a higher line than cases with a floating mount. 
 
The data for the four thermal cases 11,12,16, and 17 are shown in Table 7. 
 
Table 7. Data for the four thermal cases. 
 
Case Core 

temperature 
Reflector 
Temperature 

Fractional change in 
cross section 

11 radiation only 303 250 .0444 
17 radiation only 343 298 .4156 
16 radiation only 413 360 .6637 
    
12 conduction + radiation 303 293 .5653 

 
The cases with radiation only (no conduction) are listed in order of the retroreflector 
temperature. 
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 The data can also be plotted with the variables reversed. The temperature as a function of 
the fractional change in cross section is plotted in Fig. 7.2. 
 
Fig. 7.2. Temperatures vs fractional change in cross section 

 
 
 
The red curve (lower) is the cube temperature. The blue curve (upper) is the core temperature. 
Case 12 with conduction is plotted separately as dots. The cube corner has a very high 
emissivity. Heat is being radiated (and conducted in case 12) from the core to the cube corner. It 
is then radiated from the front face of the cube corner. The core temperature is always higher 
than the cube temperature. 
 
 For case 12 (dots), the cube temperature (lower red dot) is almost as high as the core 
temperature (upper blue dot). The fractional change in cross section is high even though the core 
temperature is not excessively high. The heat conducted through the mount increases the 
temperature of the cube and also changes the temperature distribution in the cube corner. Both 
effects cause changes in cross section. 
 
 The temperature of the cube in case 12 with conduction depends on the conductance of 
the mount. The dependence of the temperature on mount conductance is plotted in Fig. 8. 
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Fig. 8. Retroreflector temperature vs mount conductance 

 
 
The mount conductance is in watts/deg(K). The temperature vs mount conductance is listed in 
Table 8. 
 
Table 8. Cube temperature vs mount conductance. 
 
Mount conductance watts/deg K Cube temperature K 
.0000  250.38 
.0002  253.31 
.0005  257.00 
.0010  261.87 
.0020  268.69 
.0050  279.40 
.0100  286.95 
.0200  293.76 
.0500  297.48 
.1000  299.36 
.2000  300.38 

 
A very small amount of conductance through the mount can have a significant effect on the 
temperature of the retroreflector. The effect of the conductance saturates as the temperature of 
the cube corner approaches the temperature of the mounting rings. 
 
 High conductivity brings the cube temperature close to the core temperature. This 
increases the fractional change in cross section. The floating mount is essential for keeping the 
cube corner as cold as possible. Case 11 shows that if the floating mount is used and the 
temperature of the cube is below about 250 deg K there should be negligible thermal effects. In 
this case, the range correction in orbit is the same as the isothermal range correction which can 
be measured in the laboratory or computed theoretically from the system parameters. 
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7. Equations of equilibrium 
 
 The thermal simulations show that the cube corner must be kept as cool as possible in 
order to minimize thermal problems. The temperature of the core and the cube depends on the 
absorptivity and emissivity of the core, the mounting cavity, and the cube corners. These 
parameters need to be chosen to minimize the temperature of the cube. If the temperature 
variations in the core and cube corner are small, it is possible to derive an equation for the 
temperature of the cubes and the core as follows. 
 
 The effective emissivity 𝑒12 between two infinite parallel plates with emissivity 𝑒1 and 𝑒2 
is given by the equation 
 
1
34
+ 1

36
− 1 = 1

346
         (1) 

 
The thermal radiation from the core to the cube consists of two parts. There is radiation from the 
retaining rings and radiation directly from the cavity. The total thermal radiation to the cube is 
 
𝑅9:;3 = s<𝑒9=>𝐴9=> + 𝑒;@ABC𝐴;@ABCD(𝑡9:;3F − 𝑡9GH3F ) 
 
where 
s = Stefan Boltzman constant = 5.6697 × 10PQ in MKS units 
𝑒9=> = the effective emissivity to the core 
𝐴9=> = the area of the cube that radiates to the core 
𝑒;@ABC =  the effective emissivity to the rings 
𝐴;@ABC = the area of the cube that radiates to the rings 
𝑡9:;3 = the temperature of the cavity and retaining rings 
𝑡9GH3 = the temperature of the cube corner 
 
If we define 
 
𝑒3RR𝐴H = 𝑒9=>𝐴9=> + 𝑒;@ABC𝐴;@ABC  
 
Then we have 
 
𝑅9:;3 = s𝑒3RR𝐴H(𝑡9:;3F − 𝑡9GH3F )       (2) 
 
where 
𝑒3RR = the effective emissivity between the core and the cube corner 
𝐴H = the total surface area of the back of the cube corner 
 
 This initial analysis neglects the mounting rings. Since the radiation from the rings and 
the cavity differs only by a constant with the same temperature dependence the rings can easily 
be added to the computation in the term 𝑒3RR𝐴H. 
 



 23 

 The temperature of the cube varies by a couple of degrees between the front and the back. 
Using the average temperature of the cube is adequate for computing the approximate 
equilibrium temperature. 
 
The heat conducted through the mounting is 
 
𝐶T = 𝑐(𝑡9:;3 − 𝑡9GH3)        (3) 
 
where c is the conductance of the mount. 
 
The thermal radiation from the front face is 
 
𝑅R = s𝑒9GH3𝐴R𝑇9GH3F          (4) 
 
where 
𝑒9GH3 = emissivity of the front face 
𝐴R = the area of the front face 
 
The equilibrium temperature is given by   
 
Heat emitted = heat absorbed 
 
s𝑒9GH3𝐴R𝑡9GH3F = 𝑅9:;3 + 𝐻9GH3       (5) 
 
Where 𝐻9GH3 is all other heating such as conduction from the core, solar radiation, and earth 
infrared. 
 
Substituting Eq. (2) into Eq. (5) gives 
 
 
s𝑒9GH3𝐴R𝑇9GH3F = s𝑒3RR𝐴H(𝑡9:;3F − 𝑡9GH3F ) + 𝐻9GH3     (6) 
 
Combining terms we have  
 
<s𝑒3RR𝐴H + s𝑒9GH3𝐴RD𝑡9GH3F = s𝑒3RR𝐴H𝑡9:;3F + 𝐻9GH3    (7) 
 
The equilibrium temperature is given by 
 

𝑡9GH3F = s3WXXYZ[\]^W_ `a\bZW
s3WXXYZ`s3\bZWYX

       (8) 

 
The heat inputs and outputs to the core are: 
 
1. Thermal radiation to the cube. 
2. Heat conducted to the cube through the mount. 
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3. Thermal radiation from the surface not covered by cube corners. 
4. Solar radiation. 
5. Earth infrared radiation. 
 
Eq. (6) gives the thermal balance for the cube. It gives a relationship between the temperature of 
the core and the cube. The thermal balance equation for the core is 
 
Heat emitted = heat absorbed 
 
s𝑒9:;3𝐴9:;3𝑡9:;3F + 𝑁𝑅9:;3 = 𝐻9:;3       (9) 
 
N is the number of cubes and 𝐻9:;3 is all other heat transfer such as energy received from solar 
radiation and earth infrared, and energy transferred to the cube by conduction. 
 
Substituting Eq. (2) into Eq. (9) 
 
s𝑒9:;3𝐴9:;3𝑡9:;3F + 𝑁s𝑒3RR𝐴H(𝑡9:;3F − 𝑡9GH3F ) = 𝐻9:;3    (10) 
 
Combining terms, 
 
<s𝑒9:;3𝐴9:;3 + 𝑁s𝑒3RR𝐴HD𝑡9:;3F = 𝑁s𝑒3RR𝐴H𝑡9GH3F + 𝐻9:;3   (11) 
 
Eq. (11) is the thermal balance equation for the core. It contains the temperature of the core and 
the temperature of the cube. Eq. (8) can be used to eliminate the temperature of the cube. 
 
Substituting Eq. (8) into Eq. (11) gives 
 
<s𝑒9:;3𝐴9:;3 + 𝑁s𝑒3RR𝐴HD𝑡9:;3F = 𝑁s𝑒3RR𝐴H

s3WXXYZ[\]^W_ `a\bZW
s3WXXYZ`s3\bZWYX

+ 𝐻9:;3  (12) 

 
Eq. (12) contains only the temperature of the core. This equation can be solved for the 
temperature of the core as a function of the physical constants. Combining terms gives 
 

ds𝑒9:;3𝐴9:;3 + 𝑁s𝑒3RR𝐴H e1 −
s𝑒3RR𝐴H

s𝑒3RR𝐴H + s𝑒9GH3𝐴R
fg 𝑡9:;3F = 

      𝑁s𝑒3RR𝐴H
a\bZW

s3WXXYZ`s3\bZWYX
+ 𝐻9:;3 (13) 

 
Cancelling and combining factors of s gives 
 
s h𝑒9:;3𝐴9:;3 + 𝑁𝑒3RR𝐴H i1 −

3WXXYZ
3WXXYZ`3\bZWYX

jk 𝑡9:;3F = l3WXXYZa\bZW
3WXXYZ`3\bZWYX

+ 𝐻9:;3 (14) 

 
Simplifying the term in ( ) on the left side we have 
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1 −
𝑒3RR𝐴H

𝑒3RR𝐴H + 𝑒9GH3𝐴R
=
𝑒3RR𝐴H + 𝑒9GH3𝐴R − 𝑒3RR𝐴H

𝑒3RR𝐴H + 𝑒9GH3𝐴R
=

𝑒9GH3𝐴R
𝑒3RR𝐴H + 𝑒9GH3𝐴R

 

 
Substituting the simplified expression and solving for the core temperature gives 
 

𝑡9:;3F =
mWWXXnZo\bZW
WWXXnZpW\bZWnX

`a\]^W

sd3\]^WY\]^W`l3WXXYZe
W\bZWnX

WWXXnZpW\bZWnX
fg

    (15)  

 
The core temperature computed from Eq. (15) can be substituted into Eq. (8) to obtain the cube 
temperature. 
 
 The terms 𝐻9GH3 and 𝐻9:;3 contain the first power of the temperatures according to Eq. 
(3). If the conduction is zero this equation give the core temperature directly. If the conduction is 
not zero then an iterative solution is required. With a floating mount there should be negligible 
conduction between the mount and the cube in space. 
 
8. Temperatures of Core and Cubes 
 
 Four cases have been computed. The only heating is solar radiation. The cubes are 1.0 
inch in diameter. A volumetric solar absorption of 10% is used for the cubes. The path length in 
the 1.0 inch cube is shorter than in a 1.5 inch cube. The heating is the average over the whole 
sphere. The solar heating for a cube at normal incidence is divided by 4 to get the average solar 
heating. The temperatures of the core and cube corner for various values of the parameters are 
shown in Table 9. 
 
Table 9. Core and cube corners temperatures computed from the equations in section 7. 
 
Col 1 2 3 4 5 6 7 8 9 10 11 
Case a9:;3 e9:;3 e9=> 𝑡Cqr3;3 𝑡9:;3 𝑡9GH3 𝐻9:;3 𝐻9GH3 𝑅9:;3 𝑅s:tGH3 𝑅9GH3 
1 .62 .29 .05 338.7 327.6 209.1 75.92 .0177 66.4 .0317 .0494 
2 .62 .29 .29 338.7 302.7 252.5 75.92 .0177 49.7 .0874 .1050 
3 .15 .80 .05 184.3 183.3 164.6 18.37 .0176 18.4 .0013 .0190 
4 .15 .80 .29 184.3 181.0 170.7 18.37 .0177 17.1 .0043 .0220 

 
The quantities listed in the table are defined below. 
 
Column: 
1  Solar absorptivity of the core 
2  Emissivity of the core 
3  Emissivity of the cavity  
4  Temperature of a sphere with no cube corners 
5  Temperature of the core 
6  Temperature of a cube 



 26 

7  Solar heating of the core 
8  Solar heating of a cube corner 
9  Thermal radiation from the core 
10 Thermal radiation to a cube corner 
11 Radiation from the front face of a cube corner 
 
 The amount of heating is independent of the emissivity of the cavity. Changing the 
emissivity changes the ratio of the heat radiated by the core and the cubes. When the emissivity 
of the cavity is increased more heat is radiated by the cube corner. The temperature of the core 
goes down but the temperature of the cube goes up. Column 11 shows the increase in the heat 
passing through the cube. This is what causes the thermal gradients. 
 
 Cases 1 and 2 are for a brushed metal, such as nickel. The thermal constants of nickel 
from the document "Thermo-Optical Properties" by Isidoro Martinez (reference Martinez,I.), 
are absorptivity = .20, and emissivity .05. If nothing is done to the surface of the cavity the 
emissivity should be about .05. If the surface of the sphere is sand blasted or brushed this can 
increase the emissivity. It also increases the solar absorptivity. If the emissivity increases more 
than the absorptivity the net result is to cool the core. 
 
 A better approach is shown by Cases 3 and 4. These cases assume some kind of OSR 
(Optical Solar Reflector, or Second Surface Reflector). Metals tend to have a higher solar 
absorptivity and lower emissivity as seen in the case of nickel. Metals tend to run hot. Glasses 
have a low solar absorptivity and a high emissivity. Glasses tend to run cold. In an OSR the solar 
radiation passes through a thin layer of glass and is reflected from a metal surface. The metal 
surface absorbs some of the solar radiation. This heat is conducted to the glass and radiated from 
the glass. This combination achieves a very low a/e (absorptivity/emissivity) ratio. 
 
In cases 3 and 4 the core and the cubes achieve very low temperatures. 
 
9. Cross section vs dihedral angle offset 
 
 Due to manufacturing errors, there will always be some unintentional dihedral angle 
offset. This section shows the effect of increasing dihedral angle offset in a one-inch uncoated 
cube corner. The dihedral angle offset goes from 0.00 to 1.25 arcsec in 0.25 arcsec increments.  
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The cross section vs dihedral angle offset is shown in Fig. 9.1. 
 
Fig. 9.1. Cross section vs dihedral angle offset. 

 
 
The offsets from top to bottom are 0.00, 0.25, 0.50, 0.75, 1.00, and 1.25 arcseconds. The 
maximum cross section is 2.829377 million sq m. In order to give better resolution in the interval 
between 32 and 40 microradians, the data has been replotted in Fig. 9.2. 
 
Fig. 9.2. Expanded plot of the section between 32 and 40 microradians. 
 

 
 
The change in the cross section with dihedral angle is quite large at the center of the pattern. 
However, the change at 32 microradians is only about 16 percent. The change at 39 microradians 
is almost zero. The stability of the cross section between 32 and 40 microradians results from 
placing the velocity aberration on the ring of 6 spots around the central peaks. 
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10. Airy pattern and cross section formula 
 
The diffraction pattern of a circular aperture is the well-known Airy pattern. The cross section at 
the center of the Airy pattern is given by the equation 
 

𝐶 = 4𝜋 wY
x
y
2
          (16) 

 
Where, 
 
C = the cross section 
A = the area of the aperture 
𝜆 = the wavelength 
 
This equation is correct at the center of the diffraction pattern regardless of the shape of the 
aperture. It can be used to normalize diffraction patterns calculated in arbitrary units. The 
dependence on velocity aberration will depend on the shape of the aperture. The center of the 
diffraction pattern is never observed in laser ranging due to velocity aberration. 
 
The diffraction pattern of a circular cube corner with perfect back reflecting faces is an Airy 
pattern. The Airy pattern is plotted in Fig. 10.1. 
 
Fig. 10.1. The Airy pattern for a one-inch coated cube corner. 

 
 
 The cross section at zero microradians is 10.613809 million sq m. Using Equation (16) 
gives 11.39990 million sq m. The difference of a factor of 1.074 is due to reflection losses on 
entering and leaving the fused silica used to construct the cube corner. The cross section at the 
center for an uncoated cube (Section 9) is 2.829377. The ratio coated/uncoated at the center is 
10.613809/2.829377 = 3.75. The Apollo Lunar cubes lost almost a factor of 4 in cross section by 
using uncoated cubes. This was necessary for thermal reasons. The absorption of solar radiation 
by the metal reflecting faces caused thermal gradients that distorted the diffraction pattern. 
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 The intensity of the ring between 30 and 40 microradians is very week. The relative 
intensity is .0175 (http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/cirapp2.html#c2). The 
cross section on this ring could be increased by adding a dihedral angle offset. However, this 
would require using expensive custom made cubes. 
 
 Using an uncoated cube increases the cross section between 30 and 40 microradians for a 
one-inch cube corner. The difference is shown in Fig. 10.2. 
 
Fig. 10.2. Comparison of coated and uncoated one-inch cube corner.

 
 
The blue curve (top) is for an uncoated cube corner. 
The green curve (bottom) is for a coated one-inch cube corner. 
Using uncoated cubes increases the cross section between 30 and 40 microradians without the 
use of a dihedral angle offset. 
 
11. Summary. 
 
 The use of small cubes eliminates the need for dihedral angle offsets. This allows the use 
of inexpensive COTS cubes. The small cubes produce a much more accurate isothermal range 
correction. If the temperature of the cube is less than about 250 deg K the percent change in 
cross section due to thermal gradients should be negligible. In this case the isothermal range 
correction will be very close to the actual range correction in orbit. 
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The benefits of using small cubes are: 
 
1. There is more uniform coverage of the surface and smaller variations with incidence angle. 
 
2. The 1.5 inch cubes are too large for the velocity aberration and required dihedral angle offsets. 
This produces a "lumpy" diffraction pattern that causes variations in range within the far field 
diffraction pattern. 
 
3. There is an interaction between dihedral angle offsets and the phase changes due to total 
internal reflection that produces an asymmetrical diffraction pattern when linear polarization is 
used. 
 
4. The 1.0 inch cubes provide the necessary beam spread to account for velocity aberration 
without the need for dihedral angle offsets. This also removes the asymmetry in the diffraction 
pattern with linear polarization. 
 
5. The diffraction pattern without dihedral angle offsets is smoother than the patterns with 
offsets. 
 
6. The diffraction pattern of an uncoated cube has a ring of spots around the central peak. The 
size of the cube can be chosen to put the velocity aberration on this ring of spots rather than on a 
slope in the diffraction pattern. This reduces the variation of the range correction with velocity 
aberration. This ring of spots is a very stable part of the diffraction pattern that does not change 
much due to various perturbations. 
 
7. The reduction in size from 1.5 to 1.0 inches appears to reduce variations in the cross section 
by about a factor of 5 or 6. 
 
8. Eliminating the dihedral angle offset makes it possible to use COTS (Commercial Off-The-
Shelf) cubes that are inexpensive and available quickly. 
 
9. There are small unintentional dihedral angle offsets in COTS cubes that are generally less than 
one arsec but can be up to two arcsec. The effect of a positive (>90 deg) offset is in the opposite 
direction from the effect of a negative (<90 deg) offset. Since the mean offset is zero the positive 
offsets tend to partially cancel the effect of the negative offsets. 
 
10. Thermal simulations show that the effect of thermal gradients in a 1.0 inch cube is very small 
with a floating mount and low emissivity of the mounting cavity. 
 
11. A floating mount requires leaving a small gap between the ring and the cube. This could 
potentially result in damage to the cube due to vibrations during launch. Vibration testing should 
be done to determine if a particular design can withstand the vibration of launch. 
 
12. The thermal simulations show that the fractional change in cross section due to thermal 
gradients is primarily a function of the temperature of the cube if a floating mount is used. 
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