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Abstract 

For very long tethered systems the sum of the kinetic and potential 

energy can be positive. The system remains in a circular orbit as long as 

the masses remain vertically aligned. The system is unstable without con-

stant control of the alignment. If the upper mass rotates forward in the 

direction of the orbital motion, the system escapes out of orbit. If the 

upper mass rotates backward, the system falls out of orbit and the lower 

mass impacts the body around which the system is orbiting . 
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1.0 INTRODUCTION 

Under NASA Contract NASB-33691 (Orbital transfer and release of teth

ered payloads, Colombo, March 1983) a study was performed of the work done 

by the reel motor in retrieving a system consisting of two equal masses 

connected by a massless tether. Table 4-1 of that report shows the alti-

tudes of the masses, the center of mass, and the orbital center before 

retrieval, and the final altitude and increase in total orbital energy 

(ti.TE) after retrieval. For the beginning entries the change in orbital 

energy ti.TE is proportional to the square of the tether length as calculated 

by equation 20 and shown in the column headed w. The last entry shows only 

about a 10 percent increase in energy over the previous entry even though 

the tether length increases by a factor of two. The attempts to understand 

this discrepancy in the last entry led to the discovery of a dumbbel 1 

system having positive total energy but able to exist in a bound circular 

orbit as long as the alignment is carefully maintained. 

2.0 ORBITAL ENERGY VS. TETHER LENGTH BEFORE AND AFTER RETRIEVAL 

Assuming that no thrusters are used, the orbital angular momentum of a 

tethered system must remain constant during retrieval . Assuming that the 

retrieval is done very slowly so that no eccentricity is introduced in the 

orbit, the final orbit radius R of a system of masses connected by a mass

less tether after retrieval is given by: 

(1) 



Page 6 

where ri are the orbital radii before retrieval and mi are the masses of 

the bodies. The orbital angular velocity w before retrieval is 

where GM is the gravitational constant of the earth. 

n after retrieval is 

The angular velocity 

n = [GM/R 3] 1; 2 

Using these equations the sum of the kinetic and potential energy before 

and after retrieval can be calculated in order to see the change in total 

orbital energy during the retrieval process. This calculation of the 

change in energy is based solely on the assumption of conservation of angu

lar momentum and circular orbits before and after retrieval. 

A set of calculations has been done for the case of a 10 metric ton 

mass at 200 km altitude connected by a massless tether to another 10 metric 

ton mass at various higher altitudes. The earth's radius is taken to be 

6378 km. Table la lists vs. tether length the energy E1 of the lower mass, 

the energy E 2 of the upper mass, the total energy EToTAL of the system · in 

the deployed state and the energy Et of a 20 metric ton mass having the 

same orbital angular momentum in a circular orbit (i.e., after retrieval to 

a circular orbit) . Table lb lists vs. tether length, the altitude after 

retrieval Ht (corresponding to Er), the altitude of the center of mass He., 

the orbital center Hoc, and center of energy HE. Appendix 1 gives a de-

tailed calculation for the first entry in the table showing all forces, 

potential and kinetic energies, and angular momentum for each mass. The 

(2) 

(3) 



Page 7 

values in Table 1 show various transition points. These transition points 

have been obtained by iterative interpolation of the results of a small 

computer program written to calculate the various quantities. 

l (km) 

12,800 
12,500 
12,450 
12,432 . 7728325 
12,400 
12,300 
12,000 
11,000 
10,000 

9,500 
9,200 
9,150 

9117.085092613 
9,100 
9,000 
8,000 
7 , 000 
6,400 
6,000 

5520.83 
5,000 

4970 . 9828 
4,000 

3429.63571136 
3,200 

2969.100184 
2,500 
1,600 

800 
400 
200 
100 

E1 
(ergs) 
x1019 

-.5203 
-.5190 
-.5188 
-.5187 
-.5186 
-.5182 
-.5168 
- . 5119 
-.5063 
-.5033 
- .5013 
-.5010 
-.50076 
-.5006 
-.4999 
-.4926 
-.4838 
-.4779 
-.4734 
-.4677 
-.4607 
-.4603 
-.4448 
-.4339 
-.4289 
-.4236 
- .4118 
-.3835 
-.3496 
-.3283 
-.3162 
-.3097 

Table la 

EJ 
(ergs) 

x1019 

+.5374 
+.5222 
+.5196 
+.5187 
+.5171 
+.5120 
+.4966 
+.4449 
+.3923 
+.3656 
+.3494 
+.3467 
+.3449 
+.3440 
+.3385 
+.2835 
+.2266 
+.1915 
+.1675 
+.1383 
+.1055 
+.1037 
+.0398 

0. 
-.0166 
-.0336 
-.0693 
-.1436 
-.2178 
-.2587 
-.2804 
-.2916 

EToTAL 

(ergs) 
x1019 

.0171 

.0031 

.0008 
0. 

-.0015 
-.0062 
-.0202 
-.0670 
- .1140 
-.1377 
-.1519 
-.1543 
-.1558 
-.1566 
-.1614 
-.2091 
-.2572 
-.2864 
-.3059 
-.3295 
-.3552 
- .3566 
-.4051 
-.4339 
-.4455 
- . 4572 
- . 4811 
- . 5271 
-.5674 
-.5870 
-.5966 
-.6013 

Er 
(ergs) 
x1019 

-.0916 
-.0954 
- .0960 
- . 0963 
- . 0967 
-.0981 
-.1022 
- .1178 
-.1364 
-.1470 
-.1539 
-.1551 
-.1558 
-.1562 
-.1587 
-.1853 
-.2174 
-.2395 
-.2556 
-.2765 
-.3012 
-.3026 
-.3545 
- . 3884 
- . 4027 
-.4175 
-.4484 
-.5094 
-.5619 
-.5855 
-.5962 
-.6012 

M: 
(ergs) 

x10 18 

-1.0866 
-.9852 
- . 9685 
- . 9627 
-.9518 
-.9186 
-.8203 
-.5081 
- .2236 
-.0934 
-.0198 
-.0078 

0. 
+.0040 
+.0274 
+.2377 
+.3991 
+.4688 
+.5028 
+.5295 
+.5403 
+.5403 
+.5060 
+.4544 
+ .4276 
+.3974 
+.3278 
+.1765 
+.0551 
+.0153 
+.0040 
+.0010 
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Table lb 

l (km) Ht (km) He. (km) Hoc (km) HE (km) 

12,800 37,157.64333 6600. 3645.51873 
12,500 35,409.79527 6450. 3595.87502 
12,450 35,123. 72395 6425. 3587.53457 
12,432.7728325 35,025.50417 6416.38642 3584.65646 00 

12,400 34,839.13772 6400. 3579.17481 2,602,764.988 
12,300 34,274.40392 6350. 3562.39684 637,516.5735 
12,000 32,615.41283 6200. 3511.58661 191,043.0744 
11,000 27,456.84164 5700. 3336 . 73648 53,119.00197 
10,000 22,844.41838 5200. 3152.53361 28,572.51997 

9,500 20,732.81257 4950. 3056.49402 22,572.82820 
9,200 19,525.79670 4800. 2997.49551 19,862.67261 
9,150 19,328.91911 4775. 2987.55784 19,459.05118 

9117.085092613 19,199.97869 4758.542546 2980.99926 19,199.97869 
9,100 19,133.25708 4750. 2977 .58967 19,067.51553 
9,000 18,745.56381 4700. 2957.56091 18,318.58861 
8,000 15,128.22448 4200 . 2750.06896 12,683.45823 
7,000 11,961.06611 3700. 2527.87689 9115.90936 
6,400 10,264.18951 3400. 2386.39203 7539.87911 
6,000 9213.76598 3200. 2288.23953 6651.23130 

5520 . 83 8037.61137 2960.415 2166.24284 5720.83139 
5,000 6857.47122 2700. 2027.66910 4844.17580 

4970.9828 6794.65979 2685.49140 2019.75326 4798.89170 
4,000 4865.54904 2200. 1741.69697 3461.30790 

3429.63571136 3883.53370 1914.81786 1565.06573 2808.88909 
3,200 3518.65195 1800. 1490.80999 2568.88570 

2969. 100184 3169 . 100184 1684.55009 1414.18794 2339.33329 
2,500 2511.78707 1450. 1252.05002 1906.21554 
1 , 600 1446.20412 1000. 913.59161 1184.21745 

800 715.55513 600. 577.09583 646.62239 
400 429.56898 400. 394.10026 411.85446 
200 307.49130 300. 298.50266 302.99827 
100 251.88620 250. 249.62282 250.75459 

The most significant transition point in Table 1 occurs at a tether 

length of 12,432.7728325 km. At this point the total orbital energy of the 

system is zero. For longer tether lengths, the total energy is positive 

meaning that the system has sufficient energy to escape from orbit. 

At a tether length of 9117.085092613 km, the energies before and after 

retrieval are equal so that the retrieval energy is zero. Since the ten-

sion in the deployed state is quite high, the reel motor must do a lot of 

work at the beginning of retrieval. Since the tether cannot push, it is 
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difficult to see how the tether can do work on the reel motor during re

trieval unless some type of yo-yo maneuver could be devised such that there 

is a net loss of energy per cycle. If the tether is librating the tension 

is greater when the tether angular momentum is parallel to the orbital 

angular momentum and less when it is antiparallel. No simulations have 

beeri done to see whether it is in fact possible to retrieve a tether of 

this length. The retrieval may be intrinsically unstable beyond a certain 

tether length, but this point has not been investigated. 

The maximum retrieval energy occurs at a length of 4970.9828 km. Be

low this length the retrieval energy keeps increasing with tether length. 

This point must still be in a region where the tether would have to do work 

on the reel motor in order to achieve a stable retrieval. 

The energy of the upper mass becomes positive at a tether length of 

3429.63571136 km. This means that if the upper mass were released from the 

upper end of the tether it would escape from orbit. 

At a tether length of 2969.100191 km the final altitude after re

trieval is equal to the altitude of the upper mass before retrieval. 

Figure 1 shows a plot of the retrieval energy t.E vs tether length up 

to the point where the retrieval energy goes negative at 9117.085092613 km. 

For short tether lengths the retrieval energy is proportional to the square 

of the tether length. Past about 1600 km the curve starts to show signifi

cant departures from the l 2 law reaching a maximum value just before 5000 

km. The curve goes negative just past 9000 km. 

For equal masses, the transition points seen in Table 1 are a function 

only of the ratio of the orbital radii of the masses in the deployed state. 
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Retrieval energy vs. tether length 
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Table 2 lists the ratio of the orbital radii for each of the transition 

points of . Table 1. The orbital radius of the upper mass is rl and that of 

the lower mass is r 1 • 

2.890053638 

2.385996517 

1.7556982 

1.521379707 

1. 451368226 

Table 2 

Type of Transition 

Total system energy equal to zero 

Retrieval energy equal to zero 

Maximum retrieval energy 

Energy of upper mass equal to zero 

Altitude after retrieval equal to that of the 
upper mass before retrieval 

The ratio r 1/rl for the point where the total energy is zero is 

.3460143. Appendix 2 shows a derivation devised by Gordon Gullahorn con

firming the possibility of positive total energy and a computer calculation 

showing the point where the total energy goes positive. 
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3.0 COMPUTER SIMULATION Of POSITIVE ENERGY DUMBBELL IN A CIRCULAR ORBIT 

A short computer simulation has been done to verify that a system with 

positive orbital energy can exist in a bound circular orbit. The lower 

mass is at 200 km altitude, the tether is 12,800 km long and the upper mass 

is at 13,000 km. Each mass is 10 metric tons. The wire joining them has a 

stiffness of 22.34 dynes/cm and is modelled as a visco-elastic connection 

with critical damping. The tension is .6608 x 10 10 dynes. The mass of the 

wire is not modelled in the simulation . The orbital angular velocity is 

. 000629128 radians/second. This is the case discussed in Appendix 1 and 

shown as the first item in Table 1. The simulation was run for 1000 

seconds of orbital time. The orbital radius remained at 6578 km for the 

lower mass and 19,378 km for the upper mass, and the wire tension was 

constant. No out-of-plane displacement developed. The upper mass devel-

oped a slight displacement of about . 2 x 10- 5 cm in the forward direction 

by the end of the run. 

lar orbit. 

Otherwise, the system remained in a perfect circu-
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4.0 COMPUTER SIMULATIONS OF INSTABILITY MODES 

4.1 Initial 1° Forward Rotation 

The simulation described in the last section shows a very small in-

plane displacement developing. In order to speed up the development of any 

potential instabilities the upper mass was started with a 1° displacement 

forward in the direction of the orbital motion. The in-plane displacement 

of the upper mass relative to the center of the system has been plotted vs 

time. At t = O, the displacement was .11 x 10 8 cm forward which ls 1°. 

The upper mass swung back through the vertical position at about 1300 sec

onds of orbital time and continued to the rear reaching a maximum of ab9ut 

.42 x 10 7 cm (about .38 degrees) at 2000 seconds. It swung forward again 

crossing the vertical at about 2600 seconds and then continued forward 

tumbling end over end. The system had rotated 90° forward at 12,200 sec-

onds and reached 180° (upside down) at 16300 seconds. The run was stopped 

at 20,000 seconds. At that time the lower mass had reached a distance . of 

64,036 km from the center of the earth and the upper mass was at 63,752 km. 

At the beginning of the run the orbital energy of the system was .17074 x 

10 18 ergs. By the end of the run the energy had increased to . 937 x 10 18 

ergs due to the contraction of the wire as the gravity gradient force 

decreased. The work done by the wire on the system was obtained by lnte-

grating the tension vs the change in length. This amounted to . 766 x 10 18 

ergs as the wire contracted from 12,800 km to 10, 315 km. The tension 

decreased from . 6608 x 10 10 to .1045 x 10 10 dynes. The kinetic energy of 

the upper mass at t = 0 ls .74 x 10 19 ergs which ls an order of magnitude 

larger than the work done by the contraction of the tether. 

stiffness was 22.34 dynes/cm. 

The wire 
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4.2 Instability From Numerical Roundoff 

As a result of numerical roundoff, the initial conditions for the 

simulation are not exactly in equilibrium. The system should eventually go 

unstable without any deliberate introduction of perturbations. A long in-

tegration has been done to see how the instability develops from a condi-

tion of almost perfect equilibrium. In order to reduce stretching of the 

wire the stiffness was increased to 1723 dynes/cm. The run proceeded 

smoothly for about 40,000 seconds of orbital time and then encountered a 

region of very slow numerical integration and small stepsizes. The run was 

terminated at 41,500 seconds. A plot of the in-plane displacement showed 

that the upper mass had first rotated forward very slightly by .2 x 10- 7 cm 

at 200 seconds and then started falling to the rear with the displacement 

increasing geometrically with time. Table 3 shows the displacement vs 

time . The displacement increases about an order of magnitude every 3200 

seconds. 

Table 3 

Time (sec) In-Plane Displacement (cm) 

1100 .00001 
3100 .00010 
6100 .00101 
9300 .0102 

12,500 .101 
15,700 1.01 
18,900 10.0 
22,200 107. 
25,400 1063. 
28,600 10,558. 
31,800 104,827. 
35,000 1,042,811. 
38,200 10,582,531. 
41,200 106,740,452. 
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A plot of the distance of each mass from the center of the earth shows 

that the altitude of the system decreases as the upper mass rotates to the 

rear against the direction of motion. The initial geocentric distance of 

the lower mass was 6578 km (200 km altitude). This decreased to 6378 km 

(the radius of the earth) at around 37,800 seconds. Since the integration 

program treats the earth as a point source, the integration continued until 

the lower mass was at a distance of 162 km from the center of the earth. 

This explains the slow integration since the lower mass was approaching the 

center of force. Because of the strong attraction of the force center, the 

tether started stretching, and the orbital energy decreased because of the 

work done on the tether. Apparently, if the upper mass rotates to the 

rear, the system falls out of orbit instead of escaping as it did for 

forward rotation of the upper mass. 

4.3 Initial .1° Backward Rotation 

This simulation has been done with the upper mass initially rotated 

.1 ° to the rear against the direction of motion. The wire stiffness was 

280 dynes/cm. The upper mass first rotated forward passing through the 

vertical reaching a maximum forward displacement of about .06° at about 

2150 seconds. It then rotated backward, passing the vertical at around 

3000 seconds and continuing backward with continually increasing speed. 

The run was terminated at 10,100 seconds because the integration was becom-

ing difficult. The altitude of the lower mass reached the radius of the 

earth at about 6700 seconds and the lower mass was 1791 km from the force 

center at the end of the run. The wire was stretching and the orbital 

energy decreasing sharply at the end. 
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4.4 Initial .1° Forward Rotation 

In this run the initial displacement of the upper mass is .1° forward 

and the wire stiffness is 73.88 dynes/cm. The integration proceeded 

smoothly and was allowed to continue to 50,000 seconds of orbital time. 

The upper mass initially rotated to the rear, passing the vertical at about 

1300 seconds and reaching a maximum displacement of about .053 degrees to 

the rear at 2100 seconds. The wire then rotated forward passing the verti

cal at 2900 seconds and continuing forward with increasing speed. Table 4 

gives the time at which the system passes various orientations. The angle 

of rotation is measured in a coordinate system rotating with the orbit of 

the center of mass. Also included is the energy of the system, the ten-

sion, and geocentric distance of each mass for each time. 

Table 4 

Angle Time Energy Tension R1 Rl 
(Deg) (Sec) (Ergs) (Dynes) (km) (km) 

.1 0 . l 710x10 18 . 6608xl0 10 6578 19,378 
0. 1300 .1716 .6598 6580 19,379 

-.05 2100 .1720 .6595 6585 19,383 
0. 2900 .1725 .6587 6593 19,391 

90. 19,400 .4339 .0395 44,896 44,897 
180 26,150 .4333 .0487 73,000 61,000 
270 32,250 .433 .6 .0449 86,000 86,000 
360 38,250 .4335 .0466 97,000 109,000 
450 44,100 .4336 .0455 119,000 119,000 
540 49,950 .4335 .0462 140,000 129,000 
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4.5 Continuation Of .1° Backward Rotation 

This run is a continuation of the run described in Section 4.3 in an 

attempt to carry the integration as far as feasible without running into 

prohibitively slow integration. Output was started at t = 9900 and contin

ued to 10192.7 seconds, decreasing the output interval from 1.00, to .10, 

and finally to .01 seconds. The lower mass came within 26. 7 km of the 

force center at 10191.6 seconds. Figure 2 shows a plot of the path of the 

lower mass at .1 second intervals from 10190.5 seconds to 10192.5 seconds. 

The arrow shows the direction to the upper mass at 10191.5 seconds. The 

unsymmetrical path may be due to the damping included in the model of the 

tether. 

4.6 Initial .1° Displacement Out-Of-Plane 

In this run, the tether is given an initial displacement of .1° in the 

out-of-plane direction. The tether is aligned with the inertial x-axis, 

the orbital velocity is toward the +y-axis and the displacement of the 

upper mass is toward the +z-axis. The upper mass executes a sinusoidal 

oscillation in the out-of-plane direction with a period of 4350 seconds. 

The amplitude decreased to about .08° toward the end of the run which was 

at 17,000 seconds. The orbital period is 9988 seconds. Half the orbital 

period is 4994 seconds which differs by about 15 percent from the out-of-

plane period. 

bital period. 

For short tethers, the out-of-plane period is half the or

The upper mass develops an in-plane displacement to the 

rear. The lower mass reaches the earth's radius at about 13,800 seconds 

and was 3183 km from the force center at the end of the run. 



Y(km) 

100 

50 

0, 

0 

~. 

so 

Figure 2. 

. I· .. T 

I 
I 
I 

' -··---·· ·-. ---~·-·-·· t· 
. ' j I 

I 
r·--
1 

, 1019~.o 

• I 
' 

· 1 :-: r-:-:.; -
I I -1 · - T 
i 

Trajectory of the lower mass near the center of force. 
, .. 
I 
I 
! 

i 

j. 
' ' 

i . 

I 
, ---- f----· 

I 
! ·-· --- ~---- - ··- I - ·-

. I 
--1 

' 
' j 

.. - j -· 

FORCE CENTER 

10192.5 

·-,- --- -· . 
, ·1 , j I , i : : , -·--r·--;. - ·t . ---~---+-- i _________________ • _____ -- ·-- ---------- - ·-- --- ------ - --· 

l --~ i--: .. j ! _: -~ ·- . I I : .. i l ! ' ' c-·-
1
-··-: :_ 1 , -~~-- 1 -- ;--------- .- --~- --- ------- ------------- -- -

1- . -, - . - ;-·--:··--1 - ~I . . 1- -- -; T . : - : - - . -
~ ; .. · , _j__ I l : . : . 
I -t-· i - : -- -· I -- ,-·--··:-·· . --- ; -- : .. ·----- ---------- -- --·-
t · , /· .. : · 1----:: .. , t-:· · ---:t · ... i . . . . 

-50 0 50 100 
Xlkm) 



. -

Page 17 

4.7 Initial 1° Forward Rotation With A Stiff Wire 

This run is a repeat of the run in Section 4.1 with the wire stiffness 

set to 42,957 dynes/cm and a 1° initial displacement of the upper mass in 

the forward direction. The purpose of using a high stiffness is to mini-

mize energy exchange between the tether and the orbit. The upper mass 

rotates to the rear, crossing the vertical at about 1250 seconds, reaching 

a maximum displacement of . 66 degrees at around 2150 seconds, and then 

swings forward again crossing the vertical at about 3050 seconds. The mass 

then continues forward for the rest of the run. The system rotated almost 

a quarter of a turn (about 89°) by the end of the run at 20,000 seconds. 

The final distance of the lower mass from the center of the earth was 

SO, 300 km and that of the upper mass was SO, 500 km. The orbital energy 

increased from .17074 x 10 18 ergs to .1 7124 x 10 18 ergs during the run and 

the tension decreased from . 6608 x 10 10 dynes to . 252 x 10 9 dynes. The 

work done by the tether was only .SOS x 10 15 ergs. Figure 3 shows a plot 

of the in-plane displacement (meters) of the upper mass with respect to the 

center of the system vs time. The sign convention used in the plot is that 

positive .displacements are to the rear. Figure 4 shows the radial compo-

nent (meters) of the upper mass with respect to the lower mass as a .func-

tion of time. Figure S shows the tension vs time. Figure 6 shows a side 

view of the system with successive configurations displaced to the right. 

This run was repeated for the first 9000 seconds without damping in 

the tether mode 1 . The integration was slower but the numerical results 

were almost the same . 
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4.8 Initial .1° Backward Rotation With A Stiff Wire 

This case is the same as that of Section 4.3 and continued in Section 

4.5, but with the stiffness increased to 42,957 dynes/cm. The purpose of 

the high stiffness is to minimize the exchange of energy between the tether 

and the orbit. In Section 4.5, the lower mass reached the center of force 

at 10191.6 seconds. For this run the geocentric distance at 10200 seconds 

is 3730 km and the energy is .1678 x 10 18 ergs (2 percent less than the 

initial .171 x 10 18 ergs). The run in Section 4.5 reached 3913 km at 9700 

seconds and the energy had dropped to - . 08 x 10 18 ergs. The present run 

was terminated at 10,600 seconds with the lower mass at 1506 km. In Sec-

tion 4.5, this altitude was reached at 10125 seconds (about 67 seconds 

before closest approach to the force center). The higher stiffness · delayed 

the decay by about 475 seconds by reducing energy absorption by the tether. 

5.0 LONG TETHER WITH A HEAVY MASS AT THE LOWER END 

The instability modes described in Section 4.0 are not solely a func

tion of tether length. This section describes a run with the same orbital 

parameters {12,800 km tether, lower mass at 200 km, upper mass at 13,000 

km) except that the lower end is given an extremely large mass (10 9 metric 

tons) while the upper mass remains at 10 tons. The upper mass is given an 

initial 1 ° rotation in the forward direction. The tension is . 26 x 10 11 

dynes, and the orbital period is 5310 seconds. The simulation was run for 

12,000 seconds of orbital time. The upper mass executed a stable sinusoi-

dal oscillation having a period of about 7500 seconds. 

as long as the period of 3065 seconds for short tethers. 

This is over twice 
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6.0 INSTABILITY OF NEGATIVE ENERGY STATES 

In Table 1, the energy of the tethered dumbbell becomes positive for a 

tether length of 12,432.77 km. In order to see if negative energy states 

are stable, a run has been done for a tether length of 12,000 km. The 

tethe~ was given an initial in-plane displacement of .1 degree in the for

ward direction. The run exhibited the same instability as the runs for a 

12,800 km tether. The initial displacement was reduced to .001 and finally 

to .000001 degrees with the same results. The next transition point is at 

9117. 08 km where the retrieval energy is zero. A run was done with a 

tether length of 9000 km and an initial displacement of .000001 degrees. 

This run was also unstable. The next transition point is at a length of 

4970.98 km when the maximum retrieval energy occurs. A run done at 4800 km 

appeared to be stable during the first 20,000 seconds. The initial dis-

placement was .000001 degrees. Runs at 5200 km and 5600 km also appeared 

to be stable. For a tether length of 6000 km, the in-plane angle was 

stable, but the altitude was not. The altitude kept increasing at an 

accelerating pace. For a length of 7000 km, both the angle and altitude 

were unstable. The in-plane angle which started in the forward direction 

oscillated to the rear twice before continuing forward at an accelerated 

pace. 

The instability seems to set in somewhere above the point of maximum 

retrieval energy. The column in Table lb giving the center of energy HE 

may provide an explanation. The center of energy is defined as the radius 

of the orbit of a single particle having the same mass and energy as the 

tethered system in the deployed state. In Table lb the center of energy is 

at the altitude of the upper mass for a tether length of 5520.83 km. For 
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the case run with a 5600 km tether, the center of energy is at 5865 km 

which is just above the upper mass at 5800 km. This is the highest run 

that appears to be stable (at least for very small in~plane oscillations). 

All the runs with longer tethers were unstable. 

7.0 SUMMARY OF RESULTS 

In very long tethers it is possible for the system to have positive 

orbital energy and yet be in a bound orbit. However, the system is unsta

ble with respect to in-plane librations. If the angular momentum of the 

libration is parallel to the orbital angular momentum the system escapes 

from orbit, and if it is anti - parallel, the system falls out of orbit. 

Neglecting tether elasticity both processes take place at constant orbital 

energy. The system is stable with respect to out-of-plane librations, but 

the coupling between the in-plane and out-of-plane motions can destabilize 

the in-plane angle. The instability of the in-plane angle may be associ

ated with the point where the center of energy goes outside the system. 

The elasticity of the tether increases the orbital energy during escape and 

decreases the orbital energy during orbital collapse. 
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8.0 APPENDIX I: COMPLETE CALCULATION OF THE ENERGY, FORCES, AND ANGULAR 
MOMENTUM FOR A 12,800 KM TETHERED DUMBBELL 

A mass of 10 metric tons at 200 km altitude is connected by a 12,800 

km tether to another mass of 10 metric tons at 13,000 km. The system has 

the same orbital angular momentum as a mass of 20 metric tons at an alti-

tude of 37,157.64333 km. The total energy of the deployed system is posi-

tive even though it is in a bound orbit. The radial acceleration of the 

system is zero with an angular velocity of .6291280459 x 10- 3 radi

ans/second. The total centrifugal force on the system with R. = 6378 km is 

= 10 x 10 6 (6578 x 10 5 + 19378 x 10 5 ) x (. 6291280459 x 10- 3 ) 2 

= 1.027343926 x 10 10 dynes. 

The total gravitational force on the system is 

= 3. 986013 x 10 20 x (10 x 10 6 ) x [ (6578 x 10 5 ) -2 + (19378 x 10s) -2] 

= 1.027343926 x 10 10 dynes. 

the system is therefore in equilibrium in a bound orbit. 

The kinetic energy of each mass is 

= .8563195015 x 10 18 ergs 

= . 7431320625 x 10 19 ergs 

The potential energy of each mass is 

• 



-GMmi/r1 = -3. 986013 x 10w x (10 x 10 6) / 6578 x 10 5 

= - . 6059612344 x 10 19 ergs 

-GMm2/r2 = -3. 986013 x 10 20 x (10 x 10 6) / 19378 x 10 5 

= - . 2056978532 x 10 19 ergs 

The total energy of each mass is 

kE 1 + PE 1 = .8563195015 x 10 18 -.6059612344 x 10 19 

= - . 5203292843 x 10 19 ergs 

KE2 + PE2 = . 7431320625 X 10 19 - . 2056978532 X 10 19 

= .5374342093 x 10" ergs 

The total energy of the system is 

TE1 + TE2 = -.5203292843 x 10 19 + .5374342093 x - 10 19 

= + .17104925 x 10 18 ergs 

The total angular momentum of the deployed system is 

m(r 12 + r;;i2)w 
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= 10 x 106 x [ (6578 x 10s) 2 + (19378 x 10 5 ) 2] x . 6291280459 x 10- 3 

= 2, 634643355 X 1022 

The angular momentum of a single mass of 20 metric tons at 37,157.64333 km 

with angular velocity .6950273674 x 10 -4 radians/sec is 

2mR20 = 20 X 10 6 X (43535.64333 X 10 5 ) 2 X .6950273674 X 10 -4 

= 2. 634643356 X 1022. 

The centrifugal force on the mass is 



2mRQ2 = 20 X 106 X (43535.64333 X 10 5) X (.6950273674 X 10- 4) 2 

= 4.206092056 X 10 8 dynes, 

and the gravitational force is 

GM(2m)/R2 = 3.986013 X 1Q20 X 20 X 10 6/(43535.64333 X 10 5) 2 

= 4.206092054 X 10 8 dynes. 

The mass is therefore in equilibrium in a circular orbit. 

The total energy of the 20 ton mass is 

2mR02/2 - GM(2m)/R 

= 20 X 10 6 X (43535.64333 X 1Q5)2 X (.6950273674 X lQ- 4) 2/2 

- 3.986013 X 1Q20 X (20 X 10 6)/43535.64333 X 105 

= 9.155746175 X 10 17 - 1.831149235 X 10 18 

= -9.155746175 x 10~ ergs 

and the system is in a bound orbit. 
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Since the retrieval state has negative total energy and the deployed 

state has positive energy, the work done during retrieval is 

WORK= -9.155746175 x 10 17 - .17104925 x 101e 

= -1.086623868 x 10~ ergs 

which is negative. 
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9.0 APPENDIX II: ENERGY OF TSS CONFIGURATIONS 

by Gordon E. Gullahorn 

In this Appendix we derive expressions for the total energy of a dumb

bell configuration in circular equilibrium (but not necessarily stable) 

orbit. (We don't include the effect of tether mass.) These are evaluated 

and plotted .. The physical situation at some chosen time is: 

0 

Earth 
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Impose x-y axes at the center of the Earth, in the standard orientation so 

that the masses lie' along the y-axis. We wish the dumbbell to maintain its 

vertical (relative to Earth) configuration; i.e. , · the two masses must 

orbit at the same angular velocity 0. Thus, the sum of the forces on each 

mass must equal the acceleration required to keep it in orbit times the 

mass. The two forces on each mass are the tension T and the gravitational 

force. The two equations (one for each mass) allow us to determine the two 

unknowns, 0 and T. 

From simple Newtonian mechanics, the forces on each mass are: 

0, - (m1GM/r12) + T) 

( 0, - (m2GM/r22) - T) 

On the other hand, by simple kinematics, the position of the inner mass 

(aligned as shown at t = 0) is 

r1 = r1(sin Ot, cos Ot) 

and its acceleration 

a1 = -0 2r 1 (sin Ot, cos Ot) 

Thus the acceleration at time zero is 

and similarly for the outer mass 

Balancing the forces with accelerations leads to a set of two equa-

tions: 

-0 2r1m1 = - (m1GM/r12) + T 

-ffZr2m2 = - (m2GM/r22) - T 

Before writing down the solution express it in terms of the mass and radius 

ratios to allow easy scaling: 
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= r = e r o < e < 1 

= 'I m. 

The restriction one ls essentially a naming convention: we shall call the 

outer mass "mass 2." The mass ratio, 'I, can take on any positive value 

depending on which mass ls heavier. 

Then, neglecting T which we do not need, 

= 

The energy for each mass, that ls the sum of kinetic and gravitational 

potential energies based on position and velocity and ignoring the tether, 

ls 

GM [ !1 _ 1 'I (r,+el) ] 
r e 2 1+e,, 

-~M [ 1 -

A program has been written to evaluate these energies and also the 

total energy E = E1 + El. They are then normalized by the (absolute value 

of the) energy the mass pair would have if in the same orbit: 

GMm 
2r (l+r,) · 

In Figure 1 (a) , (b) , (c) we plot the normalized energies vs. the ratio of 

radii, e = r1/rl, each plot for a different mass ratio 'I = m1/ml. In each 

case, the top curve (at the left of the plot) ls the energy of mass 2, the 

outer mass; the middle curve is the total energy; and the lower curve is 

the energy of mass 1, the inner mass. Note that the energy of mass 2 
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becomes positive for long tethers (small radius ratios), and eventually 

brings the total energy along with it. At least at a naive level, what ls 

happening is that the outer mass is being forced to traverse its orbit more 

rapidly than it would without the tether; l ts kinetic energy increases 

beyond the normal "orbital" kinetic energy, eventually totally swamping the 

gravitational potential energy. We have also computed, for each mass ratio 

~. the values of€ at which E and E2 are zero; these are plotted in Figure 

2. Note the logarithmic scale on the abscissa. The top curve shows the 

tether length which zeroes the energy of the outer mass alone, while the 

lower curve is for the total energy. One interesting fact: the curve for 

total energy ls symmetric about a vertical line through log(€) = 0. That 

is, if we swl tch the masses in a system, l t wl 11 take the same tether 

length (assuming the same outer orbit radius) to reach the transition be-

tween negative (bound) and positive total energy; this ls not to say that 

the total energy will be the same for other tether lengths, a matter which 

we haven't explored. 

shortest tether. 

Also note that the equal mass case requires the 

In summary, we have confirmed that positive energies are possible in a 

dumbbell system with sufficiently long tether. The outer mass orbl ts 

faster than in a free orbit, in order to maintain a fixed configuration 

with the inner mass, and its (positive) kinetic energy dominated when the 

tether connecting l t to the inner mass becomes very long. For equal 

masses, the "optimal" case, the tether must be longer than about 65% of the 

radius of the outer mass's orbit. The tether length required for positive 

energy (that ls, its ratio to the outer mass orbit radius) depends only on 

the ratio of the masses, and not on which one is larger. 
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